
1

Using EnScript to Make Your Life
Easier – Session 1
Suzanne Widup, James Habben, Bill Taroli

22

Master Title

Session 1
Getting Started with EnScript

3

• EnScript is similar to Java and C++, so if you have expertise in those languages, you’ll have
a head start.

• Support for COM and DCOM libraries

• You write programs in the EnScript Integrated Development Environment (IDE)

• EnScript is case sensitive, so keep that in mind when coding

• You don’t need a case open to get started writing EnScripts

To Begin With…

EnScript Basics

4

• Get Started:

• Open EnCase if you haven’t already, and choose New EnScript from the EnScript
menu

Where the magic happens

EnScript Integrated Development
Environment

5

EnScript Help

How to Learn More

6

AKA EnScript Help

EnScript Types Library

7

Tool Tips

Using the IDE

Classic vs. Full Edit mode Line Numbers

8

Anatomy of an EnScript
• This is what you get each time you create a new script—it is the bare minimum required for

a script to run in this environment.

• The words in blue are called reserved words. They have special meaning in the
language, and can only be used as designed.

9

• Required for the code to be recognized as an executable script.

• Without the MainClass statement, the script will not stand alone—it would have to be
included and called from another script that had a MainClass.

• The class definition of the MainClass is shown here and is the first and last lines only

class MainClass {

void Main(CaseClass c) {

}

}

The MainClass

10

• If the MainClass is the roadmap, these are the turn-by-turn directions.

• Just having a MainClass is not sufficient for an EnScript to run.

• The compiler will also be looking for the Main() function.

• What is a function? A function is just a chunk of code that performs a particular task.

The Main() Function

11

• Comments are your friend, and it is standard practice

// Here is a one line comment.

/* Here is a multi-line comment. The slash asterisk combination

starts the block of the comments, and to stop it, you reverse the
order to end the block. It doesn’t have to be on it’s own line,
but it is a good practice to have beginning and ending symbols
line up.

*/

Commenting your Code

12

• First program usually just writes the string “Hello World” to a console.

• You can type this in yourself in your new script, or if you run into errors (or don’t want to type in code) you can just open the ‘Hello
World.EnScript’ file in our session folder for this class. That file also has the comment examples in it.

• Either way, here is what you need to have when it is ready to run:

class MainClass {

void Main(CaseClass c) {

Console.WriteLine("Hello World");

}

}

• NOTE: EnScript is case sensitive. The capitalization of letters is important.

Hello World

13

• Click on the Compile Project button. The Output tab has the results of the compile.

Compiling our Script

14

• Once you have the script compiling without errors, feel free to run it and see the output in
the Console tab.

• You run a script using the green right facing triangle button next to the Compile Project
button.

• The Console tab is to the left of the Output tab in the bottom pane.

Running the Script

15

The Profile Browser

16

• WriteLine() can write to other locations—anything that is a FileClass object or a type of file can be
written to with this, in fact.

• Our example was writing to the Console tab—so we used the Console property (which is a
reference to a FileType object) to tell EnCase what to write to.

• The dot between Console (class object) and WriteLine() (function) is how we tell the compiler we
are talking about this object’s properties or methods.

• Following the WriteLine(), we see the pair of parentheses and the double-quoted text we want to
display within.

• We can either include text within the double quotes, or use placeholders to display the contents of
variables we have used in our program.

• Finally, we have the terminating character of the semicolon, which lets the compiler know we’re
done with that line of code and it does not continue on a subsequent line.

How does WriteLine() work?

17

• These are terms used in object-oriented languages. They may be new to you, so let’s take
a moment here and give you some definitions. Object-oriented programming languages
such as EnScript refer to objects. These are data structures that have properties and
methods.

• In our first EnScript, the Console is the object. A property is a characteristic of an object.

• A method, in contrast, is a function that is part of the object’s class.

• Functions are simply a chunk of code that can be called by name and passed data as
parameters on which to act.

What do I mean by object, property, and
method?

18

• Used to store data, control program flow, and return values as parameters.

• Must be declared before use.

• Variable names cannot be EnScript reserved words, start with a number, and cannot contain characters used as logical
operators in EnScript.

• Two main types:

• Functional - natively supported in the language

• Object – defined by a class

• When you declare a variable, it is given a default value.

• Numbers: zero

• Char and string: null character

• Bool: zero

• Conversion between different variable types is handled by the compiler automatically

Variables

19

Controlling the Program Flow

20

The For Statement
• Basic syntax:

for (statement1; condition; statement2)

{

Code to execute until condition is met;

}

21

• Basic syntax:

if(This > That)

{

Console.WriteLine(“This is greater than That.”);

}

else if (This == That)

{

Console.WriteLine(“This and That are equal.”);

}

else

{

Console.WriteLine(“That is greater than This.”);

}

The If, Else If, and Else Statements

22

The While and Do While Statements
• Basic syntax of the while loop:

while(condition)

{

Code to execute;

}

• Basic syntax of the do while loop:

do

{

Code to execute;

}

while(condition);

23

• As with other languages, the break statement will allow you to force an exit from a logical loop. The continue statement will stop this iteration of the loop that is executing and continue
on with the next. These are frequently used as boundary statements where minimum and maximum values are enforced, but there are other uses.

Here is the syntax inside of an if statement:

if (true)

{

continue;

/* This is met, so it stops this loop’s execution and moves back up

to the if statement to test the condition again. */

}

else

{

break; //this breaks us out of the loop entirely.

}

• Infinite logic loop—don’t try this at home.

The Break and Continue Statements

24

The Foreach, Forall and Forroot
Statements
• Basic syntax:

String Path = “c:\\Data\Myfiles”;

foreach (char element in Path)

{

Console.WriteLine(“{0}”, element);

}

25

• Blocks of code that perform a specific job.

• You then call them from the main function to invoke them.

• Why have functions?

• Code reuse is a good thing—why solve a problem more than once?

• Breaking code into chunks makes it more manageable

• If you have to make a change to the function, you only have to do it in one place

• If you have multiple people writing EnScripts, you can share functions that perform
useful jobs between scripts.

Functions

26

• Everything you create in EnScript is created inside a class—whether it is the MainClass() or
some other class, you are using them when you program in this language.

• A class is basically the blueprint or specification that you use to instantiate (create a specific
instance of) individual objects.

Classes

27

• A class can be declared inside the mainClass before or after it.

• You want to define associated properties, which you can see in our code reference

• The constructor is a special type of function, with the same name as the class. It serves as an initializer
for the class. Not all classes require a constructor – how to tell? The Matching Symbols tab.

• The script must be compiled and run at least once.

• Highlight the name of the class and press the F1 key (or right click and choose Lookup). The
Matching Symbols tab will show the class name.

• Double click the class name in the Matching Symbols tab and the window will populate. See the
wrench icon next to the first line? That indicates the class needs a constructor. Some classes
have multiple constructors, so this is how you can see what they are and which one to use.

• If you forget your constructor, the script will compile as expected without errors. But when you run the
script, you get and error “Reference to null object”.

The AirCraft Class

28

• EnCase has LOTS of classes

• Classes that let you access case data (* means we will talk about it in session 2):

• BookmarkClass

• CaseClass

• DeviceClass

• EntryFileClass *

• EntryClass *

• ItemIteratorClass *

Common EnScript Classes

29

• http://www.encasebook.com is the site of Suzanne’s book. The code examples from the book are
all available for download from the site, and this deck and the files from this class will also be
available there.

• http://www.forensickb.com: He is currently moving his EnScripts to another location, but when he
finishes this will be the place to look to find out where they are now.

• Jon Stewart’s blog: http://codeslack.blogspot.com/search/label/EnScript

• Guidance Software’s blog: http://encase-forensic-
blog.guidancesoftware.com/search/label/EnScript

• Guidance Software EnScript Documentation:
http://download.guidancesoftware.com/c25XatJ%2BMLtpof3YVpmEOlB3T0iA31eTM%2BEhCiZn
3qasSw8q8H6/pCBa%2BDoCHVte

(downloads the SDK as a zip file)

EnScript Resources

30

Thank You
Suzanne Widup | Verizon | suzanne.widup@verizon.com | @SuzanneWidup

James Habben | Verizon | james.habben@verizon.com | @JamesHabben
Bill Taroli | Independent Contractor | bill.taroli@billsden.org | @btaroli

